Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 330: 138603, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37028714

RESUMO

In the recycling of end-of-life rare-earth magnets, the recovery of non-rare earth constituents is often neglected. In the present study, strong cation and anion exchange resins were tested batchwise for the recovery of the non-rare-earth constituents of permanent magnets (copper, cobalt, manganese, nickel and iron) from synthetic aqueous and ethanolic solutions. The cation exchange resin recovered most of metal ions from aqueous and ethanolic feeds, whereas the anion exchange resin could selectively recover copper and iron from ethanolic feeds. The highest uptake of iron and copper was found for 80 vol% and 95 vol% multi-element ethanolic feeds, respectively. A similar trend in selectivity of the anion resin was observed in breakthrough curve studies. Batch experiments, UV-Vis, FT-IR and XPS studies were performed to elucidate the ion exchange mechanism. The studies indicate that the formation of chloro complexes of copper and their exchange by the (hydrogen) sulfate counter ions of the resin have an important role in the selective uptake of copper from the 95 vol% ethanolic feed. Iron(II) was largely oxidized to iron(III) in ethanolic solutions and was expected to be recovered by the resin in the form of iron(II) and iron(III) complexes. The moisture content of the resin did not have a significant role on the selectivity for copper and iron.


Assuntos
Resinas de Troca Aniônica , Metais Terras Raras , Cobre , Ferro , Imãs , Espectroscopia de Infravermelho com Transformada de Fourier , Compostos Ferrosos
2.
RSC Adv ; 11(14): 8207-8217, 2021 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-35423291

RESUMO

The separation of rare-earth elements (REEs) from other components of end-of-life NdFeB and SmCo magnets was investigated by column chromatography. A carboxylic-acid functionalized supported ionic liquid phase (SILP) was studied as a stationary phase. The magnets were firstly leached with a dilute aqueous or ethanolic hydrochloric acid solution at room temperature. Leaching of REEs from a NdFeB magnet was similarly efficient with both lixiviants, but the REEs were more efficiently leached from a SmCo magnet with the ethanolic lixiviant. The SILP exhibited a high affinity towards trivalent cations of REEs, which were successfully recovered from the aqueous and ethanolic leachates of magnets. Divalent cations of iron and cobalt, which were the major components of the acidic aqueous leachates of magnets, were rejected by the SILP. Iron and cobalt were present as negatively charged chloro complexes in the ethanolic leachates of magnets, and were not recovered by the cation-exchanging SILP. A versatile column chromatography method is developed, suitable for the separation of REEs from iron and cobalt, either from aqueous or ethanolic leachates of permanent magnets.

3.
Ind Eng Chem Res ; 59(34): 15332-15342, 2020 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-32952290

RESUMO

Solvometallurgy is a new branch of extractive metallurgy in which green organic solvents are used instead of aqueous solutions to improve selectivity in separation processes. In the present study, nonaqueous leaching of a Greek bauxite residue (BR) was performed and scandium was separated from other elements in the leachate by column chromatography. At first, the selectivity of sorbents for scandium(III) over iron(III) was tested in batch mode using various organic solvents. The following three sorbents were tested: (1) a carboxylic acid-functionalized supported ionic liquid phase (SILP), (2) silica (SiO2), and (3) silica functionalized with ethylenediaminetetraacetic acid (SiO2-TMS-EDTA). The best separation of scandium and iron was achieved from ethanolic solution by the SILP. The BR was then leached with 0.7 mol L-1 HCl in ethanol or in water. The leaching efficiency of scandium with both lixiviants was similar. However, much less sodium was leached, and silica remained in solution when leaching was performed with the ethanolic lixiviant. By using ethanol as opposed to water, the serious drawback of silica gel formation that is taking place in the aqueous leachate of BR was circumvented. The sorption preference of the SILP for metal ions in the ethanolic leachate was partly reversed compared to the aqueous leachate. Iron was separated from other metals of the ethanolic BR leachate by a simple elution with ethanol. The formation of the anionic tetrachloroferrate(III) complex, [FeCl4]-, enabled the selective elution. This complex was not observed in the aqueous leachate of BR. Scandium was separated from the vast majority of other components of the BR by elution with 0.1 mol L-1 H3PO4.

4.
RSC Adv ; 8(22): 11886-11893, 2018 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-35539416

RESUMO

Bauxite residue (BR) contains substantial concentrations of rare-earth elements (REEs), but their recovery is a challenge. Acidic BR leachates typically comprise much higher concentrations of base elements (g L-1) than those of the REEs (ppm). Thus, adsorbents that are highly selective for the REEs over the base elements are required for the separation. The novel supported ionic liquid phase (SILP) betainium sulfonyl(trifluoromethanesulfonylimide) poly(styrene-co-divinylbenzene) [Hbet-STFSI-PS-DVB] was evaluated for the uptake of REEs (Sc, Y, Nd, Dy) in the presence of base elements (Ca, Al, Fe) from BR leachates. Breakthrough curves from acidic nitrate and sulfate media were investigated, as both HNO3 and H2SO4 are commonly used for leaching of BR. The SILP exhibited a superior affinity for REEs in both media, except in the case of Sc(iii) from the sulfate feed. The recovery rates of the trace amounts of REEs from the real nitrate feed were remarkably high (71.7-100%) via a simple chromatography separation, without requiring complexing agents or a pretreatment for the removal of interfering elements. The REEs were purified from the base elements and separated into three sub-groups (scandium, light REEs and heavy REEs) by an optimized elution profile with H3PO4 and HNO3 in a single chromatographic separation step.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...